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Fig. 1: We demonstrate the effectiveness of the CrossQ algorithm in combination with a Joint Target Prediction (JTP) or

Central Pattern Generator (CPG) architecture for learning omnidirectional locomotion on the MAB HoneyBadger quadruped.

Abstract— On-robot Reinforcement Learning is a promising
approach to train embodiment-aware policies for legged robots.
However, the computational constraints of real-time learning on
robots pose a significant challenge. We present a framework for
efficiently learning quadruped locomotion in just 8 minutes of
raw real-time training utilizing the sample efficiency and min-
imal computational overhead of the new off-policy algorithm
CrossQ. We investigate two control architectures: Predicting
joint target positions for agile, high-speed locomotion and Cen-
tral Pattern Generators for stable, natural gaits. While prior
work focused on learning simple forward gaits, our framework
extends on-robot learning to omnidirectional locomotion. We
demonstrate the robustness of our approach in different indoor
and outdoor environments and provide the videos and code for
our experiments at: https://nico-bohlinger.github.
io/gait_in_eight_website

I. INTRODUCTION

Legged robot locomotion has long been an important

research area in robotics, as achieving robust, agile, and

adaptable gaits in unstructured environments is a challenging
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yet essential capability for many real-world applications. Tra-

ditional model-based controllers [1], [2], while effective in

well-structured settings, often struggle to handle the inherent

uncertainties and dynamic variations encountered in real-

world terrains. In contrast, Deep Reinforcement Learning

(DRL) offers a promising paradigm that allows robots to

autonomously acquire locomotion skills directly through

interaction with the environment. In recent years, DRL has

shown remarkable success in learning complex and agile

locomotion skills for many different legged robots [3], such

as high-speed running [4], [5], jumping and climbing in

parkour-like courses [6], [7], navigating through challenging

terrain [8], [9], and performing handstands and backflips [7],

[10]. However, these works rely on scaling up on-policy DRL

algorithms, mainly Proximal Policy Optimization (PPO)

[11], through thousands of parallel simulated environments

with GPU-based physics engines [12]. While a plethora

of domain randomization is necessary to zero-shot transfer

policies trained in simulation to the real world [13], [14], this

creates a significant embodiment gap between the widely

randomized and approximated dynamics of the simulated

robot and the specific, nuanced dynamics of the real robot.

On-robot learning promises to bridge the embodiment gap

by learning directly on the real system. This enables the

DRL agent to be aware of its physical embodiment and the
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specific hardware constraints. It can continuously adapt to

changes, such as wear and tear, battery depletion, hardware

modifications, or environmental changes. Recent advances in

off-policy DRL have made first steps toward this paradigm by

improving the learning efficiency enough to enable training

quadruped locomotion in real-time directly on the robot [15],

[16], [17]. However, these works must simplify the learning

task to plain forward locomotion with a fixed target velocity.

They only achieve crawling gaits and rely on powerful

laptops with dedicated GPUs to run the training process

fast enough to be feasible. Our goal is to lift computational

constraints by improving the learning efficiency and update

speed with the recently proposed CrossQ DRL algorithm [18]

and extend the learning task to omnidirectional locomotion,

allowing any desired velocity in the xy-plane.

Our main contributions are as follows:

• We introduce an efficient on-robot learning framework

based on CrossQ

• We learn forward and omnidirectional locomotion while

reaching higher maximum velocities, training signifi-

cantly faster, and doubling the action frequency com-

pared to previous works.

• We investigate and compare two control architectures

based on Joint Target Prediction (JTP) and Central

Pattern Generators (CPGs), highlighting the trade-offs

between achieving aggressive, high-speed gaits and

maintaining stable, natural locomotion with high foot

clearance.

• We provide comprehensive empirical evaluations in

simulation and in two real-world environments, demon-

strating the practical viability and effectiveness of our

framework.

II. PRELIMINARIES

In this section, we introduce the necessary background and

notational foundation for the remainder of the paper. First, we

describe the Reinforcement Learning (RL) framework and

efficient algorithms to learn in it. Then, we introduce the

quadruped robot platform used in our experiments in both

simulation and the real world.

A. Reinforcement Learning

We formulate the problem of learning on-robot locomotion

as training an RL agent that interacts with an environment

defined by a Partially Observable Markov Decision Process

(POMDP) M = (S,A,O, P,O,R, γ), where S is the state

space, A is the action space, O is the observation space, P
is the transition dynamics, O is the observation function,

R is the reward function, and γ is the discount factor.

Due to partial observability and noisy sensors, the agent

does not have access to the true state of the environment

s ∈ S , but instead receives observations o ∈ O. To learn

a control policy π(a|o) that solves the POMDP, the agent

needs to explore the environment sufficiently. Therefore,

we employ the Maximum Entropy RL framework [19].

The goal is to learn a policy that maximizes the expected

discounted return while also maximizing the entropy of the

policy J(π) = Eτ∼π [
∑

∞

t=0
γt(rt − αH(π(·|ot)))], where

τ = (o0, a0, r0, o1, a1, r1, . . .) is a trajectory generated by

rolling out the policy π in the environment and H(π(·|ot))
and α are the entropy of the policy and the temperature

parameter, respectively.

B. Efficient model-free off-policy Reinforcement Learning

Soft Actor-Critic (SAC) [20] is a popular choice of model-

free off-policy DRL algorithms for tasks with continuous

state-action spaces. SAC is an actor-critic algorithm, formu-

lated for the Maximum Entropy RL framework. As such, it

learns a soft Q-function

Qπ
φ(o, a) = Eτ∼π [

∑

∞

t=0
γt(rt − α log π(at|ot))] ,

with o0 = o and a0 = a, which models the expected

discounted return of a policy π when taking action a based

on the current observation o. This is done by minimizing

the Bellman error [Qπ
φ(ot, at) − rt − γQπ

φ(ot+1, at+1)]
2.

Simultaneously, SAC learns a parameterized policy πθ(a|o),
with the objective of maximizing expected discounted return

θ = argmax
θ

Qπ
φ(o, πθ(o)).

To reduce the number of environment interactions, authors

have mainly proposed to increase the Update-To-Data (UTD)

ratio, which refers to the number of gradient updates per-

formed per agent environment interaction [21], [22], [23],

[24]. Naturally, this results in increased compute costs and

wall-clock time, which can be problematic for on-robot

learning in real-time, especially on a constrained compute

budget. Previous work on on-robot learning for quadruped

locomotion has relied on the Dropout Q-Functions (DroQ)

algorithm [24] with a UTD ratio of 20 [15], [16] to achieve

sample-efficient but compute-intensive learning.

In this work, we build on the recently proposed CrossQ

algorithm [18] that is based on SAC and achieves state-

of-the-art sample efficiency while maintaining the original

UTD of 1. The authors achieve this by carefully using

Batch Normalization (BN) [25] within the critic network and

removing target networks. The main insight is to compute the

BN statistics on the joint current state-action (o, a) and next

state-action (o′, a′ ∼ πθ(o
′)) distribution. In practice, this is

implemented via a joint forward pass of the current and next

state-action batches through the Q-function.

C. Quadruped platform

All experiments were performed on the HoneyBadger

4.0 quadruped robot from MAB Robotics (Figure 2), a

12DoF platform with three actuated joints per leg. The

robot measures 60 cm in length, 40 cm in width and height,

and has a mass of 12 kg. Each joint is driven by a torque-

controlled, quasi-direct drive actuator with a 9:1 gear ratio

while weighing 0.5 kg each. The actuators are controlled

by MAB MD80 servo drives and deliver a nominal torque

of 9Nm and a peak of 18Nm. Furthermore, the robot is

equipped with a dual-computer system, a VectorNav VN-100

AHRS IMU, and is powered by a 42V Li-Ion battery. The

robot’s software is built on ROS 2 that enables the necessary

low-level joint control for our experiments.



Fig. 2: MAB Robotics HoneyBadger quadruped robot in the

real world (left) and in the MuJoCo simulation (right).

III. EFFICIENT FOR ON-ROBOT LEARNING FOR

LEGGED LOCOMOTION

We propose learning legged locomotion directly on the

HoneyBadger quadruped robot using the CrossQ algorithm

and a carefully designed learning framework. First, we define

the task setting and reward design for learning forward and

omnidirectional locomotion. Then, we introduce two control

architectures based on JTPs and CPGs to efficiently learn

agile, stable and natural gaits.

A. Locomotion tasks & reward design

We first consider the task of learning forward locomotion

only as a simplified version of the full locomotion task, since

it is commonly used in on-robot locomotion learning [15],

[16], [17]. We formulate the task as learning to track a

desired x-velocity v̄x ∈ R with the robot’s trunk. The reward

function is designed to encourage the robot to move in a

straight line forward at the target velocity while keeping the

body orientation upright and minimizing energy consumption

by penalizing high torques. Ablations on the reward function

can be found in appendix C. Besides tracking a desired

velocity, we also consider training the robot to walk forward

as fast as possible and change the reward function to simply

encourage higher forward velocity while penalizing any

velocity in the y-direction. Finally, forward-only locomotion

with a fixed target velocity is a common limitation when

learning on-robot locomotion, therefore, we extend the task

to omnidirectional locomotion by considering random de-

sired velocities in the xy-plane v̄xy ∈ R
2. Although we

omit a target yaw velocity, this setting matches the sim2real

literature in robot locomotion more closely [26] and enables

a more versatile gait. We modify the tracking reward to also

consider the y-velocity by penalizing any deviation from the

target velocity in the y-direction. Table I summarizes the

reward functions for the fixed forward, maximum forward,

and omnidirectional locomotion tasks, defined by rtrack-x,

rmax-x, and rtrack-xy, respectively.

One of the main challenges of training RL policies directly

on a real robot is the availability of key quantities needed

in reward terms and the inherent noise in estimates of

these quantities. Unlike in simulation, where the complete

and true state of the robot is readily available, real-world

experiments must rely on state estimation techniques that

introduce significant uncertainty through sensor noise and

may not provide all the necessary information to begin with.

We limit our reward function to rely only on proprioceptive
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Fig. 3: Comparison of the linear x-velocity estimation with

only integrating the acceleration data from the IMU with a

Kalman filter, with the Kalman filter fusing of the accelera-

tions and the leg odometry, and the ground truth.

information, such as accurate torque measurements from

the joint encoders and noisy data from the onboard IMU.

The orientation of the trunk is estimated by fusing the

magnetometer and accelerometer data. For the linear velocity

of the trunk, we use a Kalman filter to fuse the acceleration

data with the averaged hip velocity inferred from a leg

odometry module that relies on the forward kinematics of the

robot. The linear velocity estimation is the most crucial part

of the robot state, as it is the main reward signal driving the

learning process, but also the most challenging to estimate

accurately due to the lack of foot contact sensors on the

robot and the integration of noisy acceleration data. Figure 3

shows that integrating only acceleration data works well after

an initial calibration but is prone to drift away from the

ground truth after a few seconds. Combining the acceleration

data with the leg odometry grounds the estimation. This

prevents significant drift in the estimates, but systematically

TABLE I: We build upon the tracking reward rtrack-x from

[17] and add penalty terms for improving the gait quality

and energy efficiency. vx, vy , and vxy are the x-, y-, and

combined xy-velocity of the trunk of the robot, respectively.

(R(θ)¦ vxy)y is the y component of the trunk velocity

rotated into the target direction defined by the target velocity

v̄xy . θ is the orientation and ω is the angular velocity of the

trunk. τ is the torque applied to the joints.

Reward Term

rtrack-x











1, for vx ∈ [v̄x, 2v̄x]

0, for vx ∈ (−∞,−v̄x] ∪ [4v̄x,∞)

1−
|vx−v̄x|

2v̄x
, otherwise

rmax-x vx − |vy |

rtrack-xy rtrack-x −
∣

∣

∣

(

R(θ)¦ vxy

)

y

∣

∣

∣

ryaw |ωyaw|2

rupright |θpitch, roll|
2

renergy |τ |2

rtotal-track-x max(rtrack-x − 0.1ryaw − 10rupright − 0.0003renergy, 0)

rtotal-max-x max(2rmax-x − 0.1ryaw − 10rupright − 0.0003renergy, 0)

rtotal-track-xy max(rtrack-xy − 0.1ryaw − 10rupright − 0.0003renergy, 0)



underestimates the velocity due to the lack of foot contact

sensors, which requires the assumption that all four feet are

always in contact with the ground. In general, the learning

process is always restricted by the quality of the linear

velocity estimation and the ability of the RL algorithm to

extract useful information from the noisy and biased signal.

A motion capture system could provide a more accurate

estimate of the linear velocity [27] but is only available

in a controlled lab setting and, hence, is not suitable for

experiments in uncontrolled environments, such as outdoors.

B. Control architecture

The first control architecture that we consider is the JTP,

which is commonly used in different variations in legged

robot locomotion [12], [15], [16]. Here, the actions of the

policy aJTP ∈ [−ϕ,ϕ] are offset joint angles to a nominal

standing position qnominal and are clipped to a maximum

deviation of ϕ. This ensures a minimal but sufficient joint

range for learning a viable gait quickly by reducing the

search space of the policy. The resulting target joint angles

qtarget = qnominal + aJTP are first processed by a filter before

being tracked by a PD controller. The filter manages the

Gaussian noise used for policy exploration during the early

training phase. Without filtering, early policies exhibit unco-

ordinated, jittery movements, leading to inaccurate velocity

estimation and oscillations that hurt the learning process and

compromise the robot’s safety. Although the low-pass filter

is a common choice for smoothing trajectories [28], [15],

[16], it also reduces the system’s responsiveness to sudden

changes, thereby decreasing the robot’s potential agility and

speed. Therefore, we employ the One-Euro filter [29] as it

can significantly enhance responsiveness by balancing the

trade-off between low-pass filtering during low velocities and

no filtering after a velocity threshold. Ablations on the choice

of the filter can be found in appendix C.

The second control architecture we consider uses the CPG

framework originating from biology [30], where rhythmic

patterns are generated by neural circuits in the spinal cord

of animals. In robot locomotion, CPGs provide an intuitive

formalism to define natural gaits by generating smooth,

periodic trajectories for the robot’s feet [31], [32], [33]. We

configure a CPG to generate a stable in-place trot pattern by

defining sinusoidal feet height trajectories pCPG = [f(ti)]
4
i=1

using a spline function

f(ti) =

{

h(−2t3i + 3t2i ), ti ∈ [0, π/2)

h(2t3i − 3t2i + 1), ti ∈ [π/2, π)

where ti is the normalized phase of the gait cycle of the

i-th foot with a fixed frequency. In case of the trot gait,

the phases of the right and left legs are shifted by π/2.

The maximum foot height h is set to 0.15m, which we

empirically validated on the HoneyBadger for robustness

on rough terrain with slight inclinations (up to 3◦). The

action of the policy aCPG = [xi, yi, zi]
4
i=1 modifies the CPG

trajectory by predicting an offset position in the Cartesian

space for each foot. Similarly to JTP, the predicted offsets are

restricted to a Cartesian subspace to reduce the complexity

of exploration. The final feet positions are calculated by p =
pCPG + aCPG, so they can be converted to the corresponding

joint angles using analytical inverse kinematics and applied

using a PD controller. While the CPG provides a stable

in-place trot, the RL policy refines this gait, enabling the

robot to walk in any direction and dynamically adapt to the

environment.

In both control architectures, the agent has access to the

following observations: joint angles, joint velocities, previous

action, linear and angular accelerations of the trunk, linear

and angular velocities of the trunk, desired trunk velocity,

and the gravity vector. As discussed for the reward function,

the linear velocities of the trunk are crucial for the learning

process, but are the most noisy and biased estimates of the

observations. For the CPG approach, the observation space

is extended to include the normalized CPG phase variable

[l1, l2] ∈ [0, 1], which tracks the current progress within the

gait cycle for the right and left legs.

IV. EXPERIMENTAL RESULTS

In this section, we empirically evaluate our framework in

both simulation and on the real HoneyBadger robot. The

simulation results compare CrossQ with state-of-the-art off-

policy methods in our locomotion setting, focusing on learn-

ing efficiency and stability. Building on these insights, real-

world experiments in different environments demonstrate

the practical viability of our framework and compare the

performance of the proposed control architectures.

A. Simulation

Before we deploy our learning framework on the real

robot, we first evaluate and ablate its performance in simu-

lation. We use the MuJoCo physics engine [34] to simulate

the HoneyBadger robot (see Figure 2) and the locomotion

tasks on flat terrain with randomized action delays. We build

on the DRL library RL-X [35] to integrate the simulation

environment with the algorithm in JAX, and to run the

experiments with 10 seeds for each setting.

First, we perform an ablation study on the learning effi-

ciency of CrossQ [18] by comparing it to other off-policy

algorithms, namely SAC [20], Aggressive Q-Learning with

Ensembles (AQE) [36], Randomized Ensembled Double Q-

Learning (REDQ) [23], and DroQ [24]. We use the default

hyperparameters proposed in the original papers and the

same network sizes for all algorithms. For the UTD ratio,

we use 1 for CrossQ, 1 and 20 for SAC, 5 for AQE, and

20 for REDQ and DroQ. Appendix A summarizes all hyper-

parameter choices. We evaluate the algorithms on learning

forward locomotion with a target velocity of v̄x = 0.5m/s

and combine them with the JTP control scheme. Figure 4

highlights the superior learning speed of CrossQ compared to

the other algorithms in terms of environment steps and pure

training time. CrossQ learns a good locomotion policy after

1 minute of training, while DroQ, the second-best algorithm

and used in previous works [15], [16], requires close to 5

times more training time to reach the same performance.

During the evaluation, the final gait of CrossQ appears to be
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smoother, which is reflected in the squared action rate norm
∑joints

j |ajt − ajt−1|
2, which is significantly lower for CrossQ

compared to the other algorithms. Importantly, CrossQ also

achieves the lowest number of falls during training. The

lower action rate norm and the fall rate indicate a better-

tempered exploration strategy, which we hypothesize to be

due to the removal of target networks, leading to more

accurate value estimates. Fewer falls are highly beneficial

for real-world experiments later on, as every fall requires

manual intervention and can lead to hardware damage.

Next, we compare the two control architectures: JTP

and CPG. We train both using CrossQ and first evaluate

their ability to learn high-speed agile locomotion on the

maximum forward velocity task. Figure 5 shows that JTP

reaches a maximum forward velocity of 1.5m/s at the end

of training, while the CPG achieves only around 0.75m/s.

This is expected, as the JTP has more direct control over

all joints and can learn a more aggressive gait. However,

the learning process with the CPG is much more stable and

leads to zero falls during training, while the JTP approach

falls multiple times. When training the agent on the target

forward velocity task with v̄x = 0.5m/s, both approaches

learn to track the target velocity quickly and show a similar

end performance. Using the CPG leads to a smaller variance

in the learning curves and no falls during training.

Finally, we evaluate the omnidirectional locomotion task

with target velocities v̄xy independently sampled from

U(−0.5, 0.5) for x and y. Figure 5 shows that the CPG

learns to track target velocities in both directions, while the

JTP struggles to learn the task at all and falls up to 30

times during training. It should be noted that we were able

to help the JTP approach learn by applying a curriculum
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[37] strategy on the sampled target velocities based on the

tracking error, but we omit this strategy, as noisy estimates

of the tracking error in real-world experiments make it

unreliable. We refer the reader to appendix B for details.

In summary, in our experiments the CPG approach is more

stable and robust. It does not fall at all during training and its

initial trot pattern is easily adaptable for the policy to learn

omnidirectional locomotion. The JTP approach, on the other

hand, learns more agile and aggressive gaits and can achieve

higher velocities. This difference in gait style can also be

seen in the different footstep patterns shown in Figure 6.

The agile JTP policies produce more irregular patterns and

higher frequency gaits, compared to the CPG ones with a

fixed gait frequency.

B. Real-world

We evaluate our learning framework on the real Honey-

Badger robot in two settings: a small office environment that

provides a smooth, level surface with low friction and no

obstacles, and a spacious outdoor environment with uneven



cobblestone terrain, high friction, and small obstacles. The

experiments for the forward locomotion task are carried out

in both environments, while learning omnidirectional loco-

motion is only evaluated outdoors due to space constraints

in the office environment (see Figure 1). The training is

performed on a M3 MacBook Pro that is directly connected

to the robot via Ethernet and ROS 2. In contrast, previous

works rely on a laptop with a dedicated NVIDIA GPU [15],

[16]. Furthermore, we can double the action frequency of our

policy to 40 Hz, compared to 20 Hz used in previous works

[15], [16], due to the reduced update time of CrossQ with

the UTD ratio of 1 and the removal of the target network.

Like in simulation, we train the policies for 20,000 steps

which corresponds to 500 seconds or around 8 minutes of

raw training time. For the omnidirectional locomotion task,

we increase the training time to 50,000 steps to handle the

increased difficulty of the task. The actual training duration is

significantly longer due to the need for manual intervention,

including resetting the robot after falls, reorienting it when

it reaches the boundaries of the training area and additional

safety triggers that prevent the robot from damaging itself

(e.g., joints being close to their angle limits). We note that

using a self-resetting policy that can recover from falls au-

tonomously and is learned prior to the main task could reduce

the training time of our experiments [15]. After training,

we evaluate the performance of the agent by removing the

exploration noise and rolling out the deterministic policy.

First, we evaluate learning forward locomotion in the

indoor office environment. In addition to combining CrossQ

with the JTP and CPG control architectures, we also include

a SAC baseline with a UTD ratio of 20, a low-pass filter

and using the JTP approach. The results of this and all the

following real world experiments are summarized in Table II.

The SAC baseline was only able to reach a very low velocity

of 0.013m/s and learned a strategy of heavily jumping with

the front legs, leading to harsh movements and poor grip

TABLE II: Comparing real-world experiments with different

environments, tasks and control architectures. Eval. Vel.:

Maximum velocity reached during evaluation. For omnidi-

rectional locomotion, separate x and y velocities are reported.

Yaw Ctl.: Deviation from initial yaw orientation. Very Good

(<10◦), Good (10◦ − 30◦), Medium (30◦ − 60◦), Poor (>
60◦). Nr. Falls: Total number of falls during training. Durat.:

Time required to complete the training and evaluation.

App. Eval. Velocity Yaw Ctl. Nr. Falls Durat.

Office: Forward Locomotion

SAC 0.013m/s Poor 43 40min

JTP 0.85m/s Medium 15 25min

CPG 0.3m/s Good 38 30min

Outside: Forward Locomotion

JTP 0.25m/s Good 19 19min

CPG 0.33m/s Very Good 39 17min

Outside: Omnidirectional Locomotion

JTP N/A N/A 6 25min

CPG x: 0.25m/s, y: 0.15m/s Poor 43 33min

on the ground. This resulted in the robot being unable to

learn a straight and stable gait. The training took up to 40

minutes to complete, due to the 20 Hz action frequency

limited by the high UTD ratio and a total of 43 falls during

training. CrossQ with the JTP approach and a One-Euro filter

was able to reach a maximum velocity of 0.85m/s after

completing the training in 25 minutes with only 15 falls,

which is the fastest gait learned in a few minutes directly on

a quadruped robot to our knowledge. The agent initially took

small steps while maintaining balance, gradually improving

its gait, and increasing its step size over time. Although the

agent developed a fast-paced trotting strategy, it struggled

with occasional backward falls and walking in a straight

line. CrossQ with the CPG reached a maximum velocity of

0.3m/s after 30 minutes of training with 38 falls. The CPG

triggered our safety constraints regularly, which led to many

unnecessary falls, nevertheless the agent was able to learn a

straight and stable gait with high foot clearance.

Next, we test the forward locomotion task in the outdoor

environment, which introduces additional complexity due to

uneven cobblestones, increased friction, and small obstacles

such as curbs. The JTP approach reached a maximum veloc-

ity of 0.25m/s after 19 minutes of training with 19 falls. The

agent initially focused on balancing its trunk by deliberately

falling backward to prevent tipping forward, but over time

leveraged front-leg coordination to maintain stability. This

initial focus on balance led to a slower final gait speed, but

the agent was able to adapt to terrain variations effectively.

The CPG approach reached a maximum velocity of 0.33m/s

after 17 minutes of training with 39 falls. The final policy

showed robustness against environmental disturbances and

avoided unnecessary safety activations after an initial phase

of struggle with inclinations.

The omnidirectional locomotion experiment introduced

random target velocities in both the x- and y-direction.

Due to the strong noise and drifting in the linear velocity

estimation, curriculum learning was not feasible, requiring

the agent to adapt without a difficulty progression for the

target velocities. Like in simulation, the JTP was unable to

learn with the full range of target velocities in the xy-plane

and failed to achieve any meaningful directional movement,

resorting to a standing behavior. The CPG achieved a max-

imum velocity of 0.25m/s in the x-direction and 0.15m/s

in the y-direction after 33 minutes. After overcoming early

instabilities that resulted in 43 falls, the agent adapted to

the outdoor environment, achieving forward, left, and right

movements during the evaluation. However, the learned gait

was not perfectly straight and the maximum velocities fell

short of the target velocities, leaving room for future work.

In summary, like in simulation, the JTP control architec-

ture proved to be more agile, while the gait of CPG looked

more natural and had better yaw control. But unlike in simu-

lation, the CPG suffered from triggering the joint limit safety

constraints, leading to more terminations during training.

Depending on the environment and the desired locomotion

task, both control architectures have their advantages and

disadvantages, with a trade-off between agility and stability.



V. CONCLUSION

In this work, we presented a framework for efficiently

learning quadruped locomotion directly on the HoneyBadger

quadruped robot using the CrossQ algorithm. Our approach

leverages CrossQ’s sample efficiency and minimal compute

overhead to achieve maximum velocities of up to 0.85m/s

in just 8 minutes of raw training. We combine CrossQ with

two control architectures: a JTP scheme for agile, high-speed

gaits and a CPG scheme for stable, natural gaits. Lastly,

we extended on-robot locomotion learning to omnidirectional

locomotion with different target velocities in the xy-plane.

Our real-world experiments in indoor and outdoor environ-

ments showed the practicality of our framework and the

robustness of the learned policies to terrain variations and

sensor noise. Future work will focus on improving the linear

velocity estimation, exploring visual observations, and fine-

tuning powerful pre-trained policies from simulation to adapt

to new environments and the specific robot embodiment that

is changing through wear and tear or hardware modifications.

APPENDIX

A. Learning and filtering hyperparameters

We summarize the hyperparameters for the different off-

policy algorithms used for the experiments in Table III. The

parameters for the action filtering are listed in Table IV.

TABLE III: Hyperparameter Configurations

Parameter SAC SAC-20 DroQ REDQ AQE CrossQ

Learn. Rate 0.003 0.003 0.001 0.0003 0.0003 0.005

Batch Size 256 256 256 256 256 128

Frequency 20 Hz 20 Hz 20 Hz 20 Hz 20 Hz 40 Hz

Neurons 256, 256

Nr. critics 2 2 2 10 10 2

Gamma 0.99

Optimizer Adam

UTD ratio 1 20 20 20 5 1

TABLE IV: Filter Parameters

Parameter None Low-pass filter One-Euro filter

mincutoff – 0.4 2.5

beta – – 0.1

dcutoff – – 100

B. Omnidirectional curriculum

To enable the JTP approach to learn omnidirectional loco-

motion, we introduce a curriculum strategy. The curriculum

is designed to systematically guide the learning agent from

easy-to-learn backward locomotion to stable omnidirectional

movement in the xy-plane. We model movement direc-

tions as a circular space, partitioned into two half-circles,

representing leftward and rightward directions. Each half-

circle is further divided into multiple bins, corresponding

to incremental directional expansions. Initially, the agent is

trained exclusively in backward movement, exploiting its

natural tendencies. As training progresses, adjacent bins are

sequentially introduced, expanding the range of movement

directions the robot can reliably execute. Performance track-

ing determines the progression of the curriculum. Each bin

is considered learned once the robot achieves at least 95% of

the target velocity over an episode. Once the robot satisfies

these conditions for a given bin, the curriculum introduces

the next adjacent bin, continuing until the full circle of

movement directions is covered. When selecting a bin, a

specific direction within it is uniformly sampled to ensure

full coverage.

C. Filter and reward ablations

We carry out ablation studies to investigate the impact

of different filter setups and reward terms on the learning

performance. The filter setups are compared in Figure 7,

showing the average return and the number of falls for the

One-Euro filter, the low-pass filter, and no filtering. The One-

Euro filter achieves a balance between the high performance

of no filtering and the low amount of falls of the low-pass

filter.

Different compositions of reward terms are compared

in Figure 8, illustrating the impact of additional reward

penalties, especially on the number of falls during training,

while maintaining the same target velocity. The additional

penalties significantly reduce the amount of falls, achieving

a 50% reduction compared to only using the tracking reward

terms.

0 10 20
Env. steps (K)

0

2

4

6

8

R
et
u
rn

(K
)

Return over steps

0 10 20
Env. steps (K)

0

5

10

15

N
r.

fa
ll
s

Falls during training

No filter Low-pass filter One-Euro filter

Fig. 7: Ablation study of filter setups, illustrating their impact

on the average return (left) and the number of falls (right).
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